Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(14): 6335-6348, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38530925

RESUMEN

Fecal bacteria in surface water may indicate threats to human health. Our hypothesis is that village settlements in tropical rural areas are major hotspots of fecal contamination because of the number of domestic animals usually roaming in the alleys and the lack of fecal matter treatment before entering the river network. By jointly monitoring the dynamics of Escherichia coli and of seven stanol compounds during four flood events (July-August 2016) at the outlet of a ditch draining sewage and surface runoff out of a village of Northern Lao PDR, our objectives were (1) to assess the range of E. coli concentration in the surface runoff washing off from a village settlement and (2) to identify the major contributory sources of fecal contamination using stanol compounds during flood events. E. coli pulses ranged from 4.7 × 104 to 3.2 × 106 most probable number (MPN) 100 mL-1, with particle-attached E. coli ranging from 83 to 100%. Major contributory feces sources were chickens and humans (about 66 and 29%, respectively), with the highest percentage switching from the human pole to the chicken pole during flood events. Concentrations indicate a severe fecal contamination of surface water during flood events and suggest that villages may be considered as major hotspots of fecal contamination pulses into the river network and thus as point sources in hydrological models.


Asunto(s)
Monitoreo del Ambiente , Escherichia coli , Humanos , Animales , Microbiología del Agua , Pollos , Contaminación del Agua , Agua , Heces
2.
Sci Rep ; 12(1): 8674, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35606475

RESUMEN

The environmental distribution of Burkholderia pseudomallei, the causative agent of melioidosis, remains poorly understood. B. pseudomallei is known to have the ability to occupy a variety of environmental niches, particularly in soil. This paper provides novel information about a putative association of soil biogeochemical heterogeneity and the vertical distribution of B. pseudomallei. We investigated (1) the distribution of B. pseudomallei along a 300-cm deep soil profile together with the variation of a range of soil physico-chemical properties; (2) whether correlations between the distribution of B. pseudomallei and soil physico-chemical properties exist and (3) when they exist, what such correlations indicate with regards to the environmental conditions conducive to the occurrence of B. pseudomallei in soils. Unexpectedly, the highest concentrations of B. pseudomallei were observed between 100 and 200 cm below the soil surface. Our results indicate that unravelling the environmental conditions favorable to B. pseudomallei entails considering many aspects of the actual complexity of soil. Important recommendations regarding environmental sampling for B. pseudomallei can be drawn from this work, in particular that collecting samples down to the water table is of foremost importance, as groundwater persistence appears to be a controlling factor of the occurrence of B. pseudomallei in soil.


Asunto(s)
Burkholderia pseudomallei , Melioidosis , Humanos , Melioidosis/epidemiología , Suelo , Microbiología del Suelo , Manejo de Especímenes
3.
Sci Total Environ ; 616-617: 1330-1338, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29070444

RESUMEN

In Montane Southeast Asia, deforestation and unsuitable combinations of crops and agricultural practices degrade soils at an unprecedented rate. Typically, smallholder farmers gain income from "available" land by replacing fallow or secondary forest by perennial crops. We aimed to understand how these practices increase or reduce soil erosion. Ten land uses were monitored in Northern Laos during the 2015 monsoon, using local farmers' fields. Experiments included plots of the conventional system (food crops and fallow), and land uses corresponding to new market opportunities (e.g. commercial tree plantations). Land uses were characterized by measuring plant cover and plant mean height per vegetation layer. Recorded meteorological variables included rainfall intensity, throughfall amount, throughfall kinetic energy (TKE), and raindrop size. Runoff coefficient, soil loss, and the percentage areas of soil surface types (free aggregates and gravel; crusts; macro-faunal, vegetal and pedestal features; plant litter) were derived from observations and measurements in 1-m2 micro-plots. Relationships between these variables were explored with multiple regression analyses. Our results indicate that TKE induces soil crusting and soil loss. By reducing rainfall infiltration, crusted area enhances runoff, which removes and transports soil particles detached by splash over non-crusted areas. TKE is lower under land uses reducing the velocity of raindrops and/or preventing an increase in their size. Optimal vegetation structures combine minimum height of the lowest layer (to reduce drop velocity at ground level) and maximum coverage (to intercept the largest amount of rainfall), as exemplified by broom grass (Thysanolaena latifolia). In contrast, high canopies with large leaves will increase TKE by enlarging raindrops, as exemplified by teak trees (Tectona grandis), unless a protective understorey exists under the trees. Policies that ban the burning of multi-layered vegetation structure under tree plantations should be enforced. Shade-tolerant shrubs and grasses with potential economic return could be promoted as understorey.

4.
Sci Rep ; 7(1): 3987, 2017 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-28638092

RESUMEN

Soil erosion supplies large quantities of sediments to rivers of Southeastern Asia. It reduces soil fertility of agro-ecosystems located on hillslopes, and it degrades, downstream, water resource quality and leads to the siltation of reservoirs. An increase in the surface area covered with commercial perennial monocultures such as teak plantations is currently observed at the expanse of traditional slash-and-burn cultivation systems in steep montane environments of these regions. The impacts of land-use change on the hydrological response and sediment yields have been investigated in a representative catchment of Laos monitored for 13 years. After the gradual conversion of rice-based shifting cultivation to teak plantation-based systems, overland flow contribution to stream flow increased from 16 to 31% and sediment yield raised from 98 to 609 Mg km-2. This result is explained by the higher kinetic energy of raindrops falling from the canopy, the virtual absence of understorey vegetation cover to dissipate drop energy and the formation of an impermeable surface crust accelerating the formation and concentration of overland flow. The 25-to-50% lower 137Cs activities measured in soils collected under mature teak plantations compared to soils under other land uses illustrate the severity of soil erosion processes occurring in teak plantations.

5.
Water Res ; 119: 102-113, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28436821

RESUMEN

The occurrence of pathogen bacteria in surface waters is a threat to public health worldwide. In particular, inadequate sanitation resulting in high contamination of surface water with pathogens of fecal origin is a serious issue in developing countries such as Lao P.D.R. Despite the health implications of the consumption of contaminated surface water, the environmental fate and transport of pathogens of fecal origin and their indicators (Fecal Indicator Bacteria or FIB) are still poorly known in tropical areas. In this study, we used measurements of flow rates, suspended sediments and of the FIB Escherichia coli (E. coli) in a 60-ha catchment in Northern Laos to explore the ability of the Soil and Water Assessment Tool (SWAT) to simulate watershed-scale FIB fate and transport. We assessed the influences of 3 in-stream processes, namely bacteria deposition and resuspension, bacterial regrowth, and hyporheic exchange (i.e. transient storage) on predicted FIB numbers. We showed that the SWAT model in its original version does not correctly simulate small E. coli numbers during the dry season. We showed that model's performance could be improved when considering the release of E. coli together with sediment resuspension. We demonstrated that the hyporheic exchange of bacteria across the Sediment-Water Interface (SWI) should be considered when simulating FIB concentration not only during wet weather, but also during the dry season, or baseflow period. In contrast, the implementation of the regrowth process did not improve the model during the dry season without inducing an overestimation during the wet season. This work thus underlines the importance of taking into account in-stream processes, such as deposition and resuspension, regrowth and hyporheic exchange, when using SWAT to simulate FIB dynamics in surface waters.


Asunto(s)
Heces , Microbiología del Agua , Bacterias , Monitoreo del Ambiente , Escherichia coli , Laos , Clima Tropical
6.
PLoS Negl Trop Dis ; 10(12): e0005195, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27935960

RESUMEN

BACKGROUND: The global burden of diarrhea is a leading cause of morbidity and mortality worldwide. In montane areas of South-East Asia such as northern Laos, recent changes in land use have induced increased runoff, soil erosion and in-stream suspended sediment loads, and potential pathogen dissemination. To our knowledge, few studies have related diarrhea incidences to catchment scale hydrological factors such as river discharge, and loads of suspended sediment and of Fecal Indicator Bacteria (FIB) such as Escherichia coli, together with sociological factors such as hygiene practices. We hypothesized that climate factors combined with human behavior control diarrhea incidence, either because higher rainfall, leading to higher stream discharges, suspended sediment loads and FIB counts, are associated with higher numbers of reported diarrhea cases during the rainy season, or because water shortage leads to the use of less safe water sources during the dry season. Using E. coli as a FIB, the objectives of this study were thus (1) to characterize the epidemiological dynamics of diarrhea in Northern Laos, and (2) to identify which hydro-meteorological and sociological risk factors were associated with diarrhea epidemics. METHODS: Considering two unconnected river catchments of 22 and 7,448 km2, respectively, we conducted a retrospective time series analysis of meteorological variables (rainfall, air temperature), hydrological variables (discharge, suspended sediments, FIB counts, water temperature), and the number of diarrheal disease cases reported at 6 health centers located in the 5 southern districts of the Luang Prabang Province, Lao PDR. We also examined the socio-demographic factors potentially affecting vulnerability to the effect of the climate factors, such as drinking water sources, hygiene habits, and recreational water exposure. RESULTS: Using thus a mixed methods approach, we found E. coli to be present all year long (100-1,000 Most Probable Number or MPN 100 mL-1) indicating that fecal contamination is ubiquitous and constant. We found that populations switch their water supply from wells to surface water during drought periods, the latter of which appear to be at higher risk of bacterial contamination than municipal water fountains. We thus found that water shortage in the Luang Prabang area triggers diarrhea peaks during the dry and hot season and that rainfall and aquifer refill ends the epidemic during the wet season. The temporal trends of reported daily diarrhea cases were generally bimodal with hospital admissions peaking in February-March and later in May-July. Annual incidence rates were higher in more densely populated areas and mostly concerned the 0-4 age group and male patients. CONCLUSIONS: We found that anthropogenic drivers, such as hygiene practices, were at least as important as environmental drivers in determining the seasonal pattern of a diarrhea epidemic. For diarrheal disease risk monitoring, discharge or groundwater level can be considered as relevant proxies. These variables should be monitored in the framework of an early warning system provided that a tradeoff is found between the size of the monitored catchment and the frequency of the measurement.


Asunto(s)
Diarrea/epidemiología , Heces/microbiología , Estaciones del Año , Microbiología del Agua , Abastecimiento de Agua , Agua , Centros Comunitarios de Salud , Demografía , Diarrea/microbiología , Diarrea/prevención & control , Epidemias , Escherichia coli/aislamiento & purificación , Femenino , Humanos , Higiene , Laos/epidemiología , Masculino , Lluvia , Estudios Retrospectivos , Ríos/microbiología , Clima Tropical
7.
Sci Rep ; 6: 32974, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27604854

RESUMEN

Lack of access to clean water and adequate sanitation continues to be a major brake on development. Here we present the results of a 12-month investigation into the dynamics of Escherichia coli, a commonly used indicator of faecal contamination in water supplies, in three small, rural catchments in Laos, Thailand and Vietnam. We show that land use and hydrology are major controlling factors of E. coli concentrations in streamwater and that the relative importance of these two factors varies between the dry and wet seasons. In all three catchments, the highest concentrations were observed during the wet season when storm events and overland flow were highest. However, smaller peaks of E. coli concentration were also observed during the dry season. These latter correspond to periods of intense farming activities and small, episodic rain events. Furthermore, vegetation type, through land use and soil surface crusting, combined with mammalian presence play an important role in determining E. coli loads in the streams. Finally, sampling during stormflow revealed the importance of having appropriate sampling protocols if information on maximum contamination levels is required as grab sampling at a fixed time step may miss important peaks in E. coli numbers.


Asunto(s)
Escherichia coli/aislamiento & purificación , Ríos/microbiología , Agricultura , Animales , Carga Bacteriana , Países en Desarrollo , Monitoreo del Ambiente , Heces/microbiología , Humanos , Humedad , Hidrología , Laos , Lluvia , Estaciones del Año , Tailandia , Clima Tropical , Vietnam , Microbiología del Agua , Abastecimiento de Agua
8.
Environ Sci Pollut Res Int ; 23(4): 3427-35, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26490918

RESUMEN

Consumption of water polluted by faecal contaminants is responsible for 2 million deaths annually, most of which occur in developing countries without adequate sanitation. In tropical aquatic systems, streambeds can be reservoirs of persistent pathogenic bacteria and high rainfall can lead to contaminated soils entering streams and to the resuspension of sediment-bound microbes in the streambed. Here, we present a novel method using fallout radionuclides ((7)Be and (210)Pbxs) to estimate the proportions of Escherichia coli, an indicator of faecal contamination, associated with recently eroded soil particles and with the resuspension of streambed sediments. We show that using these radionuclides and hydrograph separations we are able to characterize the proportion of particles originating from highly contaminated soils and that from the resuspension of particle-attached bacteria within the streambed. We also found that although overland flow represented just over one tenth of the total flood volume, it was responsible for more than two thirds of the downstream transfer of E. coli. We propose that data obtained using this method can be used to understand the dynamics of faecal indicator bacteria (FIB) in streams thereby providing information for adapted management plans that reduce the health risks to local populations. Graphical Abstract Graphical abstract showing (1) the main water flow processes (i.e. overland flow, groundwater return flow, blue arrows) and sediment flow components (i.e. resuspension and soil erosion, black arrows) during floods in the Houay Pano catchment; (2) the general principle of the method using fallout radionuclide markers (i.e. (7)Be and (210)Pbxs) to estimate E. coli load from the two main sources (i.e. streambed resuspension vs soil surface washoff); and 3) the main results obtained during the 15 May 2012 storm event (i.e. relative percentage contribution of each process to the total streamflow, values in parentheses).


Asunto(s)
Berilio/análisis , Escherichia coli , Sedimentos Geológicos/microbiología , Plomo/análisis , Radioisótopos/análisis , Ríos/microbiología , Monitoreo del Ambiente , Heces/microbiología , Inundaciones , Ceniza Radiactiva , Lluvia , Clima Tropical , Contaminantes del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...